

Constraint-based planning

Ari K. Jónsson (PI)
Tania Bedrax-Weiss
Will Edgington
Jeremy Frank
Conor McGann
Paul Morris
Nicola Muscettola
David E. Smith

Outline

Motivation

- NASA planning needs
- Project goals

Technical basics

- Motivation for approach
- Brief introduction to constraint-based planning

Applications

- Research projects
- Mission-related projects

Need for advanced planning

NASA needs for autonomous planning capabilities

- Ground-based assistance with spacecraft operations planning
- Automated decision-making on board spacecraft
- Air traffic management assistance
- Complex operations, such as flight planning

Common elements of domains

- Concurrent operations with temporal dependencies
 - Instruments, mobility, heaters, communications, etc.
- Limited resource availability
 - Power, data storage, equipment, etc.
- Complex rules for interactions between operations
 - Example: Instruments require heating, interact with communications and mobility operations

Project Objectives

High-level goals of CBP project

- Develop plan representation and reasoning techniques
 - Capabilities to support NASA applications
 - Well-defined algorithms and theory
 - Support different search methods and mixed-initiative planning
- Build core planning system
 - Foundation for current and future research work
 - Core representation and reasoning module for applications
- Apply and adapt techniques to applications
 - Work to understand application needs for core capabilities
 - Work with research and mission projects to apply technology

Motivation and heritage

Handle planning in the real world

- Real-world activities have temporal extent
 - Example: Slew spacecraft from one target to another
 - Time is continuous and relations are quantitative
- Real-world activities require resources
 - Example: Imaging requires available data storage
 - Resources may be single or multi-capacity, reusable or consumable
- Real-world plans have complex concurrent interactions
 - Example: High-resolution imaging cannot be done while spacecraft is thrusting, and only if imager is warm enough

Approach based on earlier systems

- HSTS core of Remote Agent Planner (flew on Deep Space One)
- IxTeT handles time and resources similar to HSTS
- Descartes and other systems have used constrained variables

Extend actions and fluents to intervals

Temporal extent of actions and fluents

- Actions have durations
 - Taking image takes time
- Fluent values may expire
 - Ready for limited time after warm-up

Use predicates to describe both

 Predicates with variable arguments enable delayed commitment

Interval describes predicate over time

- Predicate with variables taking values from domains
- Start and end time
- Duration restrictions

Planning domain constraints

Planning domain

- Predicate types
- Domain constraints

Planning constraints

- Specify conditions for intervals appearing in plan
- Examples:
 - Camera ready before takePic
 - Engine off from 0:02 before takePic to 0:01 after
 - Duration of takePic depends on target

Reasoning techniques

Dynamic constraint reasoning with procedures

 General framework for representing plan candidate constraint network and perform constraint reasoning such as propagation

Reasoning with uncertainty

 Extend temporal and constraint reasoning to handle uncertainty in time and other parameters

Reasoning about resources

Compute and use resource bounds for plan candidates

Search techniques

Support different search control for modifying candidates

Intelligent search control

Simplify use by reducing need for hand-crafted heursitics

Projects using EUROPA

IDEA

 Use planning system to uniformly represent future plan, execution plan, and execution results

SOFIA

 Use plan database to represent complex flight plans that include observation arcs, endurance limitations, etc.

EOS

 Use plan database to represent observation requests and schedules for multiple Earth-observing satellites

Spoken dialog interface to planning

 Link plan database and planning capabilities to a spoken dialog interface to provide easy access to plans and planners

Projects using EUROPA

Personal Satellite Assistant

 Using planner and IDEA to build a controller for PSAprototype, an autonomous satellite with sensors and motors to operate on International Space Station

Mars Exploration Rovers (Mars 03)

- Use plan database to represent science and engineering activities, linked to APGEN visual interface
- Use planning with non-chronological goal rejection to provide mixed-initiative plan completion
- Extend planner to use APGEN-generated resource profiles to generate plans within resource bounds

Selected Publications

- Jeremy Frank, and Ari Jonsson, "Constraint-based Attribute and Interval Planning", in Constraints Journal special issue on planning.
- David Smith, and Ari Jonsson, "The Logic of Reachability", in AIPS 2002.
- Paul Morris, Nicola Muscettola, and Thierry Vidal, "Dynamic Control of Plans with Temporal Uncertainty", in IJCAI 2001.
- Ari K. Jonsson, and Jeremy Frank, "A Framework for Dynamic Constraint Reasoning using Procedural Constraints", in ECAI 2000.
- Jeremy Frank, Ari K. Jonsson, and Paul H. Morris, "On Reformulating Planning as Dynamic Constraint Satisfaction", in Symposium on Abstraction, Reformulation and Approximation (SARA), 2000.
- Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and Ben Smith, "Planning in Interplanetary Space: Theory and Practice", in AIPS 2000.
- David E. Smith, Jeremy Frank, and Ari K. Jonsson, "Bridging the Gap Between Planning and Scheduling", Knowledge Engineering Review, 15(1), 2000.
- Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, and Kanna Rajan, "Next Generation Remote Agent Planner", in iSAIRAS 1999.

Extra slides

Dynamic constraint reasoning

Framework for dynamic constraint reasoning

- Supports arbitrary procedural constraints
 - Specialized reasoning for declarative constraints supported
- Performs propagation to eliminate values and check consistestency

Properties

- Combinations of correct elimination procedures proven to also be correct
- Baseline propagation performs a version of arc consistency maintenance; achieves AC if each procedure achieves AC
- Performance incomparable to declarative arc consistency methods; each constraint faster, propagation cycle slower

Reasoning with uncertainty

Temporal uncontrollability

- Certain events may not be under planner control
 - Actual event time decided during execution
- Example: How long it takes to move to a target
- Need methods to build plans that will work regardless of outcome of uncontrollable event

Tractable uncertainty reasoning

- Uncertainty in outcome requires universal quantification
- Solvable constraint networks allow any outcome to be extended to a solution
- Preliminary work underway on identifying and using solvable constraint networks

Resource reasoning

Bounding resource usage

- Flexible candidate plans give rise to bounds on resource use
- Need to calculate tight bounds to identify resource problems early, and provide guidance to search engine

Using external resource calculations

- In a current application, resource calculations provided by external simulation software
- Simulation only provides earliest start time resource profile
- Adapt search to reason with provided profiles

Combining resource reasoning and mutual exclusion

- Uses critical path and mutual exclusion analysis to propagate integrated resource bounds
- Ongoing work in collaboration with summer students

Bounding resource usage

Using maximal flow to calculate tight bounds

- Given a temporal network of resource use events, determine max/min resource use at a given time T
- Identify events that can be ordered with respect to time T
- Build flow network from events and resource use
- Maximal flow calculations provide resource bound
- Bounds are provably tight

Ongoing work

- Theoretical results and algorithms in place
- Incorporation into planning framework and performance tests to be done in near future

Search techniques

Support for multiple search methods

- Dynamic enforcement of domain constraints
- Subgoal intervals and variable sets may become obsolete when later changes are made
- Constraint database currently maintained in consistent form, to support propagation
 - Efforts underway to support queries into inconsistent database

Currently used search methods

- Chronological backtracking
- Mixed-initiative planning
- HBSS
- Non-chronological backtracking with goal rejection

Heuristic search control

Language for specifying heuristics

- Based on language used in Remote Agent Experiment
- Uses priority assignments for variables and subgoals
- Supports limited context specification

"Values remaining" inspired heuristics

Evaluate flexibility of decision points and decisions

Projected state space analysis

- Project state space onto subset of states to guide search
- Have method to build projected state space approximations

Mutual exclusion reasoning for time

- Extend mutual exclusion reasoning to temporal planning
- Allows pruning candidate plans

Deliveries and schedules

Software deliveries

- Ongoing support for needs of collaborative efforts
- Improved performance of core software

Research milestones

- Planning with resource bound calculations
- Reasoning about uncertain outcomes
- Domain-independent search control

Schedule outline

- FY01: Initial use in application prototypes
- FY02: Prototype implementation of reasoning modules for resources and uncontrollable events; improved performance; continued deliveries for applications and research
- FY03: Prototype implementations of domain-independent and automatically generated search control information; continued development for applications